Title of article :
An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells
Author/Authors :
Alexander Kutikov، نويسنده , , Artem B. and Song، نويسنده , , Jie، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA–PEG–PLA (PELA) improved the stability of HA–PELA suspension at 25 wt.% HA content, which was readily electrospun into HA–PELA composite scaffolds with uniform fiber dimensions. HA–PELA was highly extensible (failure strain >200% vs. <40% for HA–PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA–PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA–PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA–PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA–PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications.
Keywords :
Bone tissue engineering , Hydroxyapatite , electrospinning , Amphiphilic polymer , Composite materials
Journal title :
Acta Biomaterialia
Journal title :
Acta Biomaterialia