Title of article :
Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy
Author/Authors :
Lv، نويسنده , , Shixian and Li، نويسنده , , Mingqiang and Tang، نويسنده , , Zhaohui and Song، نويسنده , , Wantong and Sun، نويسنده , , Hai and Liu، نويسنده , , Huaiyu and Chen، نويسنده , , Xuesi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
13
From page :
9330
To page :
9342
Abstract :
An amphiphilic anionic copolymer, methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)), with three functionalized domains, was synthesized and used as a nanovehicle for cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) delivery via electrostatic interactions for cancer treatment. The three domains displayed distinct functions: PEG block chain for prolonged circulation; poly(phenylalanine) domain for stabilizing the nanoparticle construct through hydrophobic/aromatic interactions; and the poly(glutamic acid) domain for providing electrostatic interactions with the cationic drug to be loaded. The copolymer could self-assemble into micellar-type nanoparticles, and DOX was successfully loaded into the interior of nanoparticles by simple mixing of DOX·HCl and the copolymer in the aqueous phase. DOX-loaded mPEG-b-P(Glu-co-Phe) nanoparticles (DOX-NP) had a superior drug-loading content (DLC) (21.7%), a high loading efficiency (almost 98%) and a pH-triggered release of DOX. The size of DOX-NP was ∼140 nm, as determined by dynamic light scattering measurements and transmission electron microscopy. In vitro assays showed that DOX-NP exhibited higher cell proliferation inhibition and higher cell uptake in A549 cell lines compared with free DOX·HCl. Maximum tolerated dose (MTD) studies showed that DOX-NP demonstrated an excellent safety profile with a significantly higher MTD (15 mg DOX kg−1) than that of free DOX·HCl (5 mg DOX kg−1). The in vivo studies on the subcutaneous non-small cell lung cancer (A549) xenograft nude mice model confirmed that DOX-NP showed significant antitumor activity and reduced side effects, and then enhanced tumor accumulation as a result of the prolonged circulation in blood and the enhanced permeation and retention effect, compared with free DOX, indicating its great potential for cancer therapy.
Keywords :
Poly(amino acids) , Doxorubicin hydrochloride , Electrostatic Interaction , DRUG DELIVERY , pH sensitive
Journal title :
Acta Biomaterialia
Serial Year :
2013
Journal title :
Acta Biomaterialia
Record number :
1757603
Link To Document :
بازگشت