Title of article :
Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing
Author/Authors :
Lai، نويسنده , , Huan-Ju and Kuan، نويسنده , , Chen-Hsiang and Wu، نويسنده , , Hsi-Chin and Tsai، نويسنده , , Jui-Che and Chen، نويسنده , , Tim-Mo and Hsieh، نويسنده , , Dar-Jen and Wang، نويسنده , , Tzu-Wei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
4156
To page :
4166
Abstract :
The objective of this research study is to develop a collagen (Col) and hyaluronic acid (HA) inter-stacking nanofibrous skin equivalent substitute with the programmable release of multiple angiogenic growth factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF)) either directly embedded in the nanofibers or encapsulated in the gelatin nanoparticles (GNs) by electrospinning technology. The delivery of EGF and bFGF in the early stage is expected to accelerate epithelialization and vasculature sprouting, while the release of PDGF and VEGF in the late stage is with the aim of inducing blood vessels maturation. The physiochemical characterizations indicate that the Col–HA–GN nanofibrous membrane possesses mechanical properties similar to human native skin. The design of a particle-in-fiber structure allows growth factors for slow controlled release up to 1 month. Cultured on biodegradable Col–HA membrane with four kinds of growth factors (Col–HA w/4GF), endothelial cells not only increase in growth rate but also form a better network with a thread-like tubular structure. The therapeutic effect of Col–HA w/4GF membrane on streptozotocin (STZ)-induced diabetic rats reveals an accelerated wound closure rate, together with elevated collagen deposition and enhanced maturation of vessels, as revealed by Masson’s trichrome stain and immunohistochemical analysis, respectively. From the above, the electrospun Col–HA–GN composite nanofibrous skin substitute with a stage-wise release pattern of multiple angiogenic factors could be a promising bioengineered construct for chronic wound healing in skin tissue regeneration.
Keywords :
electrospinning , Angiogenic growth factors , Nanofiber , Controlled release , Skin tissue engineering
Journal title :
Acta Biomaterialia
Serial Year :
2014
Journal title :
Acta Biomaterialia
Record number :
1758390
Link To Document :
بازگشت