Title of article :
Electric-field induced ion-leveraged metal–insulator transition in conducting polymer-based field effect devices
Author/Authors :
Epstein، نويسنده , , Arthur J and Hsu، نويسنده , , Fang-Chi and Chiou، نويسنده , , Nan-Rong and Prigodin، نويسنده , , Vladimir N، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2002
Pages :
5
From page :
339
To page :
343
Abstract :
The field effect devices prepared completely from conducting polymers, especially poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS), were studied. Normally in a conductive “on” state, the transistor-like device has a transition to a substantially less conductive “off” state at an applied positive gate voltage, typically ∼15–25 V. The current ratio Ioff/Ion can exceed 10−4 at room temperature. We have found that the field effect is strongly temperature dependent and is substantially reduced upon decreasing the temperature by only a 10 °C. This loss of current reduction upon application of a gate voltage is not due to the temperature dependence of the electrical conductivity of polymers of which the devices are made. The temperature dependence of the dc conductivity of the PEDOT/PSS follows the variable range hopping law both before and after application of the gate voltage, though with an increased activation energy, T0. We suggest that the conducting polymer is near the metal–insulator transition and that the field effect in the device is related to the electric field modulating this transition in the region underneath the gate electrode. The transition is controlled and leveraged by ion motion. The time dynamics of the current with the gate modulation strongly supports our conjecture. We demonstrate the generality of the phenomena by presenting similar results for devices fabricated from the conducting polypyrrole doped with Cl.
Keywords :
Field effect device , Transistors , Polypyrrole , conducting polymers , PEDOT
Journal title :
Current Applied Physics
Serial Year :
2002
Journal title :
Current Applied Physics
Record number :
1769157
Link To Document :
بازگشت