Title of article :
Optimization of power deposition and a heating strategy for external ultrasound thermal therapy
Author/Authors :
Lin، Win-Li نويسنده , , Liang، Tzu-Chen نويسنده , , Yen، Jia-Yush نويسنده , , Liu، Hao-Li نويسنده , , Chen، Yung-Yaw نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2016
Pages :
-2171
From page :
2172
To page :
0
Abstract :
The purpose of this paper is to examine the thermal dose distribution, to configure the optimal absorbed power deposition, and to design an appropriate heating strategy for ultrasound thermal therapy. This work employs simulation programs, which are based on the transient bio-heat transfer equation and an ideal absorbed power deposition or an ideal temperature elevation within a cube of tissue, to study the optimal absorbed power deposition. Meanwhile, a simplified model of a scanned ultrasound transducer power deposition (a cone with convergent/divergent shape) is used to investigate the heating strategy for a large tumor with a sequence of heating pulses. The distribution of thermal dose equivalence defined by Sapareto and Dewey [Int. J. Radiat. Oncol., Biol., Phys. 10, 787-800 (1984)] is used to evaluate the heating result for a set of given parameters. The parameters considered are the absorbed power density, heating duration, temperature elevation, blood perfusion, and the size of heating cube. The results demonstrate that the peak temperature is the key factor determining the thermal dose for this short-duration heating. Heat conduction has a very strong influence on the responses of temperature and thermal dose for a small heating cube and the boundary portion of a large heating cube. Hence, for obtaining the same therapeutic result, a higher power density is required for these two conditions to compensate the great temperature difference between the heating cube and the surrounding tissue.
Keywords :
short circuit current , power quality , Fault current limiter , transient over voltage
Journal title :
MEDICAL PHYSICS
Serial Year :
2001
Journal title :
MEDICAL PHYSICS
Record number :
1782
Link To Document :
بازگشت