Title of article :
The Néel temperature of a -dimensional bcc Heisenberg antiferromagnet
Author/Authors :
Rado?evi?، نويسنده , , Slobodan M. and Rutonjski، نويسنده , , Milica S. and Panti?، نويسنده , , Milan R. and Pavkov-Hrvojevi?، نويسنده , , Milica V. and Kapor، نويسنده , , Darko V. and ?krinjar، نويسنده , , Mario G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The double-time temperature-dependent Green’s function method is used to determine the Néel temperature of a Heisenberg antiferromagnet with easy axis X X Z anisotropy on a D -dimensional bcc lattice. Exact equations within the random phase approximation (RPA) and Callen approximation (CA) in terms of generalized hypergeometric functions valid for arbitrary D , S , and η ≥ 1 are given. Analytical and numerical results presented here strongly suggest that, for D ≥ 2 , the CA gives a higher critical temperature. It is also shown that the RPA set of self-consistent equations yields a Néel temperature closer to the experimental value for compound (CH3NH3)2MnCl4.
Keywords :
A. Heisenberg antiferromagnet , D. Néel temperature , D. Green’s functions , D. Generalized hypergeometric function
Journal title :
Solid State Communications
Journal title :
Solid State Communications