Author/Authors :
Nّrsett، نويسنده , , Kristin G and Lوgreid، نويسنده , , Astrid and Midelfart، نويسنده , , Herman and Yadetie، نويسنده , , Fekadu and Erlandsen، نويسنده , , Sten Even and Falkmer، نويسنده , , Sture and Grّnbech، نويسنده , , Jon E and Waldum، نويسنده , , Helge L and Komorowski، نويسنده , , Jan and Sandvik، نويسنده , , Arne K، نويسنده ,
Abstract :
The aim of the present work is to identify molecular markers that allow classification of gastric carcinoma with respect to important clinicopathological parameters. Gastric adenocarcinomas were subjected to cDNA microarray analysis with a 2.504 gene probe set. Using the Rosetta rough-set based learning system, good classifiers were generated for gene-expression based prediction of intestinal or diffuse growth pattern according to Laurénʹs classification and presence of lymph node metastases. To our knowledge, this is the first study on gastric carcinoma in which molecular classification has been achieved for more than one clinicopathological parameter based on microarray gene expression profiles.
Keywords :
Prognosis , Gastric cancer , cDNA microarray , Learning