Title of article :
Investigation of HVOF spraying on magnesium alloys
Author/Authors :
Parco، نويسنده , , Maria and Zhao، نويسنده , , Lidong and Zwick، نويسنده , , Jochen and Bobzin، نويسنده , , Kirsten and Lugscheider، نويسنده , , Erich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
3269
To page :
3274
Abstract :
Magnesium alloys are promising alternatives to other lightweight alloys such as aluminum alloys due to their high specific strength and stiffness. However, the use of magnesium alloys is limited by their poor wear behaviour and corrosion performance. Recent studies have shown an enormous potential of thermal spray techniques for the surface modification of Mg alloys. The high particle velocities and moderate temperatures achieved by the High Velocity Oxy-Fuel (HVOF) flame spray process lead to very dense coatings with outstanding wear behaviour and superior bond strengths in comparison to other thermal spray processes. In this study, two Mg alloys AZ91 and AE42 were coated using the HVOF spray process. The substrates were compared in terms of the measured bond strength and the observed adhesion mechanisms of the coating. Furthermore, the coatings were characterized concerning their corrosion performance on AZ91 substrates. It was found that dense WC–Co coatings could be applied on Mg alloy substrates using the HVOF spray process. The high kinetic energy of the WC–Co particles led to a “self roughening” effect on the substrate, enabling the deposition on polished Mg alloy substrates. The coatings showed a very good adhesion to the substrates. The corrosion tests showed that the unsealed WC–Co coatings could not improve the corrosion performance of Mg alloys. In contrast, the duplex coating system with an Al bond coat improved significantly the corrosion resistance of Mg alloys. The sealed coatings showed a very good corrosion behaviour.
Keywords :
Magnesium , Corrosion , HVOF , WEAR
Journal title :
Surface and Coatings Technology
Serial Year :
2006
Journal title :
Surface and Coatings Technology
Record number :
1814055
Link To Document :
بازگشت