Title of article :
Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration
Author/Authors :
Khan، نويسنده , , R.H.U. and Yerokhin، نويسنده , , A. and Li، نويسنده , , X. and Dong، نويسنده , , H. and Matthews، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
1679
To page :
1688
Abstract :
Plasma electrolytic oxidation (PEO) is a specialised but well-developed process which has found applications in aerospace, oil/gas, textile, chemical, electrical and biomedical sectors. A novel range of coatings having technologically attractive physical and chemical properties (e.g. wear- and corrosion-resistance) can be produced by suitable control of the electrolyte as well as electrical parameters of the PEO process. Oxide ceramic films, 3 to 40 μm thick, were produced on 6082 aluminium alloy by DC PEO using 5 to 20 A/dm2 current density in KOH electrolyte with varied concentration (0.5 to 2.0 g/l). Phase analysis (composition and crystallite size) was carried out using X-ray diffraction and TEM techniques. Residual stresses associated with the crystalline coating phase (α-Al2O3) were evaluated using the X-ray diffraction Sin2ψ method. Nanoindentation studies were conducted to evaluate the hardness and elastic modulus. SEM, SPM and TEM techniques were utilised to study surface as well as cross-sectional morphology and nano features of the PEO coatings. Correlations between internal stress and coating thickness, surface morphology and phase composition are discussed. It was found that, depending on the current density and electrolyte concentration used, internal direct and shear stresses in DC PEO alumina coatings ranged from − 302 ± 19 MPa to − 714 ± 22 MPa and − 25 ± 12 MPa to − 345 ± 27 MPa, respectively. Regimes of PEO treatment favourable for the production of thicker coatings with minimal stress level, dense morphology and relatively high content of α-Al2O3 phase are identified.
Keywords :
Residual stresses , XRD Sin2? method , Nanoindentation , Plasma Electrolytic Oxidation , Current Density , Electrolyte concentration , Direct current (DC)
Journal title :
Surface and Coatings Technology
Serial Year :
2010
Journal title :
Surface and Coatings Technology
Record number :
1823460
Link To Document :
بازگشت