Title of article :
Monitoring brain tumor response to therapy using MRI segmentation
Author/Authors :
Vaidyanathan، نويسنده , , M. and Clarke، نويسنده , , L.P. and Hall، نويسنده , , L.O. and Heidtman، نويسنده , , C. and Velthuizen، نويسنده , , R. and Gosche، نويسنده , , K. and Phuphanich، نويسنده , , S. and Wagner، نويسنده , , Joshua H. and Greenberg، نويسنده , , H. and Silbiger، نويسنده , , M.L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
12
From page :
323
To page :
334
Abstract :
The performance evaluation of a semi-supervised fuzzy c-means (SFCM) clustering method for monitoring brain tumor volume changes during the course of routine clinical radiation-therapeutic and chemo-therapeutic regimens is presented. The tumor volume determined using the SFCM method was compared with the volume estimates obtained using three other methods: (a) a k nearest neighbor (kNN) classifier, b) a grey level thresholding and seed growing (ISG-SG) method and c) a manual pixel labeling (GT) method for ground truth estimation. The SFCM and kNN methods are applied to the multispectral, contrast enhanced T1, proton density, and T2 weighted, magnetic resonance images (MRI) whereas the ISG-SG and GT methods are applied only to the contrast enhanced T1 weighted image. Estimations of tumor volume were made on eight patient cases with follow-up MRI scans performed over a 32 week interval during treatment. The tumor cases studied include one meningioma, two brain metastases and five gliomas. Comparisons with manually labeled ground truth estimations showed that there is a limited agreement between the segmentation methods for absolute tumor volume measurements when using images of patients after treatment. The average intraobserver reproducibility for the SFCM, kNN and ISG-SG methods was found to be 5.8%, 6.6% and 8.9%, respectively. The average of the interobserver reproducibility of these methods was found to be 5.5%, 6.5% and 11.4%, respectively. For the measurement of relative change of tumor volume as required for the response assessment, the multi-spectral methods kNN and SFCM are therefore preferred over the seedgrowing method.
Keywords :
MRI , Pattern recognition , Tumor response evaluation , Brain tumor , image segmentation
Journal title :
Magnetic Resonance Imaging
Serial Year :
1997
Journal title :
Magnetic Resonance Imaging
Record number :
1829257
Link To Document :
بازگشت