Title of article :
Unsupervised feature dimension reduction for classification of MR spectra
Author/Authors :
Baumgartner، نويسنده , , R. L. Somorjai، نويسنده , , R. and Bowman، نويسنده , , C. C. Sorrell، نويسنده , , T.C. and Mountford، نويسنده , , C.E. and Himmelreich، نويسنده , , U.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
251
To page :
256
Abstract :
We present an unsupervised feature dimension reduction method for the classification of magnetic resonance spectra. The technique preserves spectral information, important for disease profiling. We propose to use this technique as a preprocessing step for computationally demanding wrapper-based feature subset selection. We show that the classification accuracy on an independent test set can be sustained while achieving considerable feature reduction. Our method is applicable to other classification techniques, such as neural networks, support vector machines, etc.
Keywords :
extraction , Classification , feature selection , MR spectroscopy
Journal title :
Magnetic Resonance Imaging
Serial Year :
2004
Journal title :
Magnetic Resonance Imaging
Record number :
1831873
Link To Document :
بازگشت