Title of article :
Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters
Author/Authors :
Damon، نويسنده , , Bruce M. and Heemskerk، نويسنده , , Anneriet M. and Ding، نويسنده , , Zhaohua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
589
To page :
600
Abstract :
Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m−1), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm3 voxel volume with isotropic resolution; 13.5-mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.
Keywords :
Diffusion tensor , Skeletal muscle , Noise , Curve fitting , Muscle architecture
Journal title :
Magnetic Resonance Imaging
Serial Year :
2012
Journal title :
Magnetic Resonance Imaging
Record number :
1833297
Link To Document :
بازگشت