Title of article :
Estimation of respiratory parameters via fuzzy clustering
Author/Authors :
Babu?ka، نويسنده , , R. and Alic، نويسنده , , L. J. Lourens، نويسنده , , M.S. and Verbraak، نويسنده , , A.F.M. and Bogaard، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
The results of monitoring respiratory parameters estimated from flow–pressure–volume measurements can be used to assess patients’ pulmonary condition, to detect poor patient–ventilator interaction and consequently to optimize the ventilator settings. A new method is proposed to obtain detailed information about respiratory parameters without interfering with the expiration. By means of fuzzy clustering, the available data set is partitioned into fuzzy subsets that can be well approximated by linear regression models locally. Parameters of these models are then estimated by least-squares techniques. By analyzing the dependence of these local parameters on the location of the model in the flow–volume–pressure space, information on patients’ pulmonary condition can be gained. The effectiveness of the proposed approaches is demonstrated by analyzing the dependence of the expiratory time constant on the volume in patients with chronic obstructive pulmonary disease (COPD) and patients without COPD.
Keywords :
Respiratory mechanics , Parameter estimation , Respiratory resistance and compliance , Mechanical Ventilation , Expiratory time constant , Fuzzy clustering , Least-squares estimation
Journal title :
Artificial Intelligence In Medicine
Journal title :
Artificial Intelligence In Medicine