Title of article :
Predicting the effectiveness of hydroxyurea in individual sickle cell anemia patients
Author/Authors :
Valafar، نويسنده , , Homayoun and Valafar، نويسنده , , Faramarz and Darvill، نويسنده , , Alan and Albersheim، نويسنده , , Peter and Kutlar، نويسنده , , Abdullah and Woods، نويسنده , , Kristy F. and Hardin، نويسنده , , John، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
16
From page :
133
To page :
148
Abstract :
The study described in this paper was undertaken to develop the ability to predict the response of sickle-cell patients to hydroxyurea (HU) therapy. We analyzed the effect of HU on the values of 23 parameters of 83 patients. A Student’s t-test was used to confirm (Rodgers GP, Dover GJ, Noguchi CT, Schechter AN, Nienhuis AW. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea, N Engl J Med 1990;322;1037–44) at the 0.001 level that treatment with HU increases the proportion of fetal hemoglobin (HbF), and the average corpuscular volume (MCV) of the red blood cells. Correlation analysis failed to establish a statistically significant relationship between any of the 23 parameters and the HbF response. Linear regression analysis also failed to predict a patient’s response to HU. On the other hand, artificial neural network (ANN) pattern-recognition analysis of the 23 parameters predicts, with 86.6% accuracy, those patients that respond positively to HU and those that do not. Furthermore, we have found that the values of only 10 of the 23 parameters (listed in the body of this paper) are sufficient to train ANNs to predict which patients will respond to HU.
Keywords :
Artificial neural networks , hydroxyurea , Hydrea , Pattern recognition , variable selection , sickle cell anemia
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2000
Journal title :
Artificial Intelligence In Medicine
Record number :
1835669
Link To Document :
بازگشت