Title of article :
Automatic classification of epilepsy types using ontology-based and genetics-based machine learning
Author/Authors :
Kassahun، نويسنده , , Yohannes and Perrone، نويسنده , , Roberta and De Momi، نويسنده , , Elena and Berghِfer، نويسنده , , Elmar and Tassi، نويسنده , , Laura and Canevini، نويسنده , , Maria Paola and Spreafico، نويسنده , , Roberto and Ferrigno، نويسنده , , Giancarlo and Kirchner، نويسنده , , Frank، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
79
To page :
88
Abstract :
AbstractObjectives presurgical analysis for drug-resistant focal epilepsies, the definition of the epileptogenic zone, which is the cortical area where ictal discharges originate, is usually carried out by using clinical, electrophysiological and neuroimaging data analysis. Clinical evaluation is based on the visual detection of symptoms during epileptic seizures. This work aims at developing a fully automatic classifier of epileptic types and their localization using ictal symptoms and machine learning methods. s sent the results achieved by using two machine learning methods. The first is an ontology-based classification that can directly incorporate human knowledge, while the second is a genetics-based data mining algorithm that learns or extracts the domain knowledge from medical data in implicit form. s veloped methods are tested on a clinical dataset of 129 patients. The performance of the methods is measured against the performance of seven clinicians, whose level of expertise is high/very high, in classifying two epilepsy types: temporal lobe epilepsy and extra-temporal lobe epilepsy. When comparing the performance of the algorithms with that of a single clinician, who is one of the seven clinicians, the algorithms show a slightly better performance than the clinician on three test sets generated randomly from 99 patients out of the 129 patients. The accuracy obtained for the two methods and the clinician is as follows: first test set 65.6% and 75% for the methods and 56.3% for the clinician, second test set 66.7% and 76.2% for the methods and 61.9% for the clinician, and third test set 77.8% for the methods and the clinician. When compared with the performance of the whole population of clinicians on the rest 30 patients out of the 129 patients, where the patients were selected by the clinicians themselves, the mean accuracy of the methods (60%) is slightly worse than the mean accuracy of the clinicians (61.6%). Results show that the methods perform at the level of experienced clinicians, when both the methods and the clinicians use the same information. sion sults demonstrate that the developed methods form important ingredients for realizing a fully automatic classification of epilepsy types and can contribute to the definition of signs that are most important for the classification.
Keywords :
Ontology-based classification , Data mining (knowledge discovery) from medical data , Epileptogenic zone identification , Genetics-based classification
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2014
Journal title :
Artificial Intelligence In Medicine
Record number :
1841710
Link To Document :
بازگشت