Title of article :
Synthesis of nickel nanoparticles with excellent thermal stability in micropores of zeolite
Author/Authors :
Inokawa، نويسنده , , Hitoshi and Maeda، نويسنده , , Makoto and Nishimoto، نويسنده , , Shunsuke and Kameshima، نويسنده , , Yoshikazu and Miyake، نويسنده , , Michihiro and Ichikawa، نويسنده , , Takayuki and Kojima، نويسنده , , Yoshitsugu and Miyaoka، نويسنده , , Hiroki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Nickel (Ni) nanoparticles were synthesized in micropores of zeolite by the adsorption and decomposition of a sublimated Ni organometallic compound, Ni(C5H5)2, to invent metallic catalysts with nanosize, which are smaller than 5 nm and keep the nanosize at high temperature. In the decomposition process, Ni species were partially decomposed by ultraviolet light irradiation and fixed in zeolite pores prior to thermal reduction under H2 flow. Note that the Ni nanoparticles showed an excellent thermal stability, because they kept the high dispersion with diameters smaller than 5 nm even after heating at 400 °C. On the other hand, the Ni particles supported on zeolite by a conventional method, which is an incipient wetness impregnation process, became larger than 10 nm after heating at the same temperature. The synthesized Ni nanoparticles acted as a metallic catalyst because they showed higher selectivity for H2 generation than C2H4 generation during ethanol steam reforming reaction.
Keywords :
Catalyst , Nickelocene , nickel , Zeolite , Nanoparticle
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy