Title of article :
A performance study of hybrid direct carbon fuel cells: Impact of anode microstructure
Author/Authors :
Lee، نويسنده , , Ji-Yong and Song، نويسنده , , Rak-Hyun and Lee، نويسنده , , Seung-Bok and Lim، نويسنده , , Tak-Hyoung and Park، نويسنده , , Seok-Joo and Shul، نويسنده , , Yong-Gun and Lee، نويسنده , , Jong-Won، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Direct carbon fuel cells (DCFCs) have recently attracted great interest because they could provide a considerably more efficient means of power generation in comparison with conventional coal-fired power plants. Among various types of DCFCs under development, a hybrid system offers the combined advantages of solid oxide and molten carbonate electrolytes; however, there is a significant technical challenge in terms of power capability. Here, we report an experimental study demonstrating how anode microstructure influences the power-generating characteristics of hybrid DCFCs. The anode microstructure (pore volume and surface area) is modified by using poly(methyl methacrylate) (PMMA) pore-formers. Polarization studies indicate that cell performance is strongly dependent on the anode surface area rather than on the pore volume. The incorporation of PMMA-derived pores into the anode leads to improved power capability at typical operating temperatures, which is attributed to an enlarged active zone for electrochemical CO oxidation.
Keywords :
Solid oxide electrolyte , Direct carbon fuel cell , Molten carbonate , Anode microstructure , Carbon oxidation
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy