Title of article :
Combination of oocyte and zygote selection by brilliant cresyl blue (BCB) test enhanced prediction of developmental potential to the blastocyst in cattle
Author/Authors :
Mirshamsi، نويسنده , , S.M. and KaramiShabankareh، نويسنده , , H. and Ahmadi-Hamedani، نويسنده , , M. H. Soltani، نويسنده , , L. and Hajarian، نويسنده , , H. and Abdolmohammadi، نويسنده , , A.R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The cumulus oocyte complexes (COCs) were obtained from local abattoir. After aspiration, the COCs were allotted into four treatments to evaluation of brilliant cresyl blue (BCB) test. Control treatment (C): oocytes were cultured directly (without exposure to BCB) after recovery in in vitro production (IVP) process. Oocyte treatment (OBCB): immediately after aspiration, COCs were incubated in modified Dulbeccoʹs phosphate-buffered saline (mDPBS) supplemented with 26 μM of BCB for 90 min and classified into two classes: oocytes with blue cytoplasm coloration (OBCB+: more competent oocytes) and oocytes without blue cytoplasm coloration (OBCB−: low competent oocytes). Directly after classification, the oocytes were maintained undisrupted in the IVP process. Zygote treatment (ZBCB): After oocyte collection, maturation and fertilization, zygotes were stained with BCB for 10 min and categorized into three ways, according to whether they were highly stained (ZBCB++: low competent zygotes), moderately stained (ZBCB+: moderate competent zygotes) and unstained (ZBCB−: more competent zygotes). Directly after classification, the zygotes were maintained undisrupted in the culture process. Oocyte and zygote treatments (OBCB/ZBCB): COCs were stained with BCB after recovery and classified into two classes (OBCB+ and OBCB−). After fertilization, the zygotes produced from OBCB+ and OBCB− oocytes were further stained with BCB for 10 min and categorized six ways (OBCB+/ZBCB++, OBCB+/ZBCB+, OBCB+/ZBCB−, OBCB−/ZBCB++, OBCB−/ZBCB+ and OBCB−/ZBCB−). Directly after classification, the zygotes were maintained undisrupted in the culture process. The selection rate produced from OBCB treatment (OBCB+; 54.3%) was greater (P < 0.05) than ZBCB treatment (ZBCB−; 44.3%). In addition, the selection rate produced from double application (combination of oocyte and zygote selection) of BCB test (OBCB+/ZBCB−: 28.8%) was less (P < 0.01) than single application of BCB test (ZBCB−: 44.3%or OBCB+: 54.3%). The percentage of blastocyst production from OBCB+ oocytes (35.7%) and ZBCB− zygotes (36.6%) were greater (P < 0.05) than that from C oocytes (25.7%), OBCB− oocytes (16.5%), ZBCB++ (13.5%) and ZBCB+ zygotes (21.3%). However, there were no significant differences (P > 0.05) in the percentages of blastocyst production between OBCB+ oocytes (35.7%) and ZBCB− zygotes (36.6%). The proportion of blastocyst production from double application of BCB test (OBCB+/ZBCB−: 48.0%) was greater (P < 0.05) than that from single application of BCB test (OBCB+: 35.7% or ZBCB−: 36.6%). In conclusion, current results confirmed that combination of oocyte and zygote selection by BCB test enhanced the efficiency of selecting for high quality embryos, compared to the single BCB test.
Keywords :
Oocyte , Fertilized , Bovine , pentose phosphate pathway
Journal title :
Animal Reproduction Science
Journal title :
Animal Reproduction Science