Title of article :
Interpolation density values on a cartesian grid: Improving the efficiency of Lebedev based numerical integration in Kohn–Sham density functional algorithms
Author/Authors :
Brown، نويسنده , , Shawn T. and Füsti-Molnلr، نويسنده , , Lلszlَ and Kong، نويسنده , , Jing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
490
To page :
495
Abstract :
Most modern Kohn–Sham density functional theory algorithms utilize atom-centered numerical quadrature techniques for integration. To take advantage of the Fourier Transform Coulomb method in the Q-Chem package, which utilizes an evenly-spaced Cartesian grid to perform highly efficient numerical integration, divided difference interpolation is explored as a means of translating the electron density and its gradients from the Cartesian grid to atom-centered grid points. Aspects of accuracy, error control through the use of the grid density, and efficiency estimations are explored and the method is shown to provide an accurate means to link the FTC method and numerical DFT integration.
Journal title :
Chemical Physics Letters
Serial Year :
2006
Journal title :
Chemical Physics Letters
Record number :
1917446
Link To Document :
بازگشت