Title of article :
Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production
Author/Authors :
Lindedam، نويسنده , , Jane and Bruun، نويسنده , , Sander and Jّrgensen، نويسنده , , Henning and Decker، نويسنده , , Stephen R. and Turner، نويسنده , , Geoffrey B. and DeMartini، نويسنده , , Jaclyn D. and Wyman، نويسنده , , Charles E. and Felby، نويسنده , , Claus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
261
To page :
267
Abstract :
We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. The best correlation of glucose yields was found between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). All three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.
Keywords :
genetic selection , Microscale pretreatment , High throughput screening , Lignocellulosic ethanol , WHEAT STRAW
Journal title :
Biomass and Bioenergy
Serial Year :
2014
Journal title :
Biomass and Bioenergy
Record number :
1919610
Link To Document :
بازگشت