Title of article :
Hydrate-based removal of carbon dioxide and hydrogen sulphide from biogas mixtures: Experimental investigation and energy evaluations
Author/Authors :
Castellani، نويسنده , , Beatrice and Rossi، نويسنده , , Federico and Filipponi، نويسنده , , Mirko and Nicolini، نويسنده , , Andrea، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
330
To page :
338
Abstract :
This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min. costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed.
Keywords :
Biogas upgrading , gas hydrates , Hydrate-based separation , Water spraying , Up-scaled apparatus
Journal title :
Biomass and Bioenergy
Serial Year :
2014
Journal title :
Biomass and Bioenergy
Record number :
1920039
Link To Document :
بازگشت