Title of article :
Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions
Author/Authors :
Baig، نويسنده , , Shams Ali and Zhu، نويسنده , , Jin and Muhammad، نويسنده , , Niaz and Sheng، نويسنده , , Tiantian and Xu، نويسنده , , Xinhua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe3+/Fe2+ by chemical co-precipitation and subsequently pyrolyzing at 500 °C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe3O4 loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am2 kg−1) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 °C) due to greater Fe3O4 composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g−1 and 3.1 mg g−1, respectively. The data best fitted in pseudo-second-order (R2 > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO43− was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.
Keywords :
Adsorption , Saccharum spontaneum , Synthesis , fabrication , Magnetic biochar
Journal title :
Biomass and Bioenergy
Journal title :
Biomass and Bioenergy