Title of article :
Magneto-optical selection rules of curved graphene nanoribbons and carbon nanotubes
Author/Authors :
Lin، نويسنده , , Chiun-Yan and Wu، نويسنده , , Jhao-Ying and Chang، نويسنده , , Cheng-Pong and Lin، نويسنده , , Ming-Fa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We derive the generalized magneto-absorption spectra for curved graphene nanoribbons and carbon nanotubes by using the Peierls tight-binding model. The main spectral characteristics and the optical selection rules result from the cooperative or competitive relationships between the geometric structure and a magnetic field. In curved ribbons, the dominant selection rule remains unchanged during the variation of the curvature. When the arc angle increases, the prominent peaks are split, with some even vanishing as the angle exceeds a critical value. In carbon nanotubes, the angular-momentum coupling induces extra selection rules, of which more are revealed due to the increase of either (both) of the factors: tube diameter and field strength. Particularly once the two factors exceed certain critical values, the optical spectra could reflect the quasi-Landau-level structures. The identifying features of the spectra provide insight into optical excitations for curved systems with either open or closed boundary condition.