Title of article :
Application of mid-infrared chemical imaging and multivariate chemometrics analyses to characterise a population of microalgae cells
Author/Authors :
Tan، نويسنده , , Suat-Teng and Balasubramanian، نويسنده , , Rajesh Kumar and Das، نويسنده , , Probir and Obbard، نويسنده , , Jeffrey Philip and Chew، نويسنده , , Wee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
316
To page :
323
Abstract :
A suite of multivariate chemometrics methods was applied to a mid-infrared imaging dataset of a eustigmatophyte, marine Nannochloropsis sp. microalgae strain. This includes the improved leader–follower cluster analysis (iLFCA) to interrogate spectra in an unsupervised fashion, a resonant Mie optical scatter correction algorithm (RMieS-EMSC) that improves data linearity, the band-target entropy minimization (BTEM) self-modeling curve resolution for recovering component spectra, and a multi-linear regression (MLR) for estimating relative concentrations and plotting chemical maps of component spectra. A novel Alpha-Stable probability calculation for microalgae cellular lipid-to-protein ratio Λ i is introduced for estimating population characteristics.
Keywords :
Cellular lipids and proteins , Multivariate chemometrics , Unsupervised hierarchical cluster analysis (HCA) , Microalgae , Mid-infrared microspectroscopic imaging
Journal title :
Bioresource Technology
Serial Year :
2013
Journal title :
Bioresource Technology
Record number :
1932116
Link To Document :
بازگشت