Title of article :
Ambient iron concentration regulates the sulfate reducing activity in the mangrove swamps of Diwar, Goa, India
Author/Authors :
Attri، نويسنده , , Kuldeep and Kerkar، نويسنده , , Savita and LokaBharathi، نويسنده , , P.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In order to test the hypothesis that the ambient iron concentrations could regulate sulfate reducing activity (SRA) in mangrove areas, 10 cm cores were examined from test and reference sites. The test site at Diwar mangrove ecosystem is highly influenced by iron released by the movement of barges carrying iron ore during the non-monsoon seasons and the reference site at Tuvem is relatively pristine. The average iron concentrations were 17.9% (±8.06) at Diwar and 6.3% (±1.5) at Tuvem. Sulfate reducing rates (SRR) ranged from 50.21 to 698.66 nM cm−3 d−1 at Tuvem, and from 23.32 to 294.49 nM cm−3d−1 in Diwar. Pearson’s correlation coefficients between SRR and environmental parameters showed that at Tuvem, the SRR was controlled by SO4−2 (r = 0.498, p < 0.001, n = 60) more than organic carbon (r = 0.316 p < 0.05, n = 60). At Diwar, the SRR was governed by the iron concentrations at an r-value of −0.761 (p < 0.001, n = 60), suggesting that ca.58% of the variation in SRR was influenced negatively by variations in ambient iron concentrations. This influence was more than the positive influence of TOC (r = 0.615, p < 0.001, n = 60). Laboratory experiments to check the influence of iron on SRR also supported our field observations. At an experimental manipulation of 50 ppm Fe3+ there was an increase in SRR but at 100 ppm an inhibitory effect was observed. At 1000 ppm Fe3+ there was a decrease in the SRR up to 93% of the control. Thus, our study showed that ambient iron concentrations influence SRR negatively at Diwar and counters the positive influence of organic carbon. Consequently, the influence could cascade to other biogeochemical processes in these mangrove swamps, especially the mineralization of organic matter to carbon dioxide by sulfate respiration.
Keywords :
sulfate , Organic matter , mangroves , Iron , Sulfate reduction
Journal title :
Estuarine, Coastal and Shelf Science
Journal title :
Estuarine, Coastal and Shelf Science