Title of article :
Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis
Author/Authors :
Salerno، نويسنده , , Michael B. and Li، نويسنده , , Xu and Logan، نويسنده , , Bruce E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
6
From page :
46
To page :
51
Abstract :
Colloid probe atomic force microscopy (CP-AFM) was used to investigate two strains of Burkholderia cepacia in order to determine what molecular scale characteristics of strain Env435 make it less adhesive to surfaces than the parent strain, G4. CP-AFM approach curves analyzed using a gradient force method showed that in a high ionic strength solution (IS = 100 mM, Debye length = 1 nm), the colloid probe was attracted to the surface of strain G4 at a distance of ∼30 nm, but it was repelled over a distance of 25 nm when approaching strain Env435. Adhesion forces measured under the same solution conditions during colloid retraction showed that 1.38 nN of force was required to remove the colloid placed in contact with the surface of strain G4, whereas only 0.58 nN was required using strain Env435. At IS = 1 mM (Debye length = 10 nm), the attractive force observed with G4 was no longer present, and the repulsive force seen with Env435 was extended to ∼250 nm. The adhesion of the bacteria to the probe was much less at low IS solution (1 mM) than at high IS (100 mM). The greater adhesion characteristics of strain G4 compared to Env435 were confirmed in column tests. Strain G4 had a collision efficiency of α = 0.68, while strain Env435 had a much lower collision efficiency of α = 0.01 (IS = 100 mM). These results suggest that the reduced adhesion of strain Env435 measured in column tests is due to the presence of high molecular weight extracellular polymeric substances that extend out from the cell surface, creating long-range steric repulsion between the cell and a surface. Adhesion is reduced as these polymers do not appear to be “sticky” when placed in contact with a surface in AFM tests.
Keywords :
bacterial adhesion , EPS , Colloid probe , Atomic force microscopy (AFM)
Journal title :
Colloids and Surfaces B Biointerfaces
Serial Year :
2007
Journal title :
Colloids and Surfaces B Biointerfaces
Record number :
1968389
Link To Document :
بازگشت