Title of article :
Shock membrane electropotential drops and limited diffusive distance of β-amyloids in cerebral neurons are detrimental enhancement to Alzheimerʹs diseases
Author/Authors :
Chang، نويسنده , , Chi-Huan and Peng، نويسنده , , Chiung-Huei and Chen، نويسنده , , Kuan-Chou and Huang، نويسنده , , Hsien-Bin and Chiu، نويسنده , , Wen-Ta and Peng، نويسنده , , Robert Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
339
To page :
345
Abstract :
Molecular physicobiochemical calculations indicated that the metallic ion binding to beta-amyloids (Aβ) may induce production of hydrogen peroxide, which triggers the Ca ion redistribution from the extracellular to the intracellular compartmentation, resulting in a transient membrane electropotential drop by at least 208.06 mV. Moreover, using the Mark and Houwink empirical equation, we predicted that the diffusible distances of all Aβ identities would be confined in a very tiny region within a radius less than 3.96 × 10−4 cm in brain at 192 h after produced. Because of the inherent tendency of aggregation behaved by the Aβs, the maximum diffusion coefficient and inherent viscosity were 8.24 × 10−15 cm2 s−1 and 72.15 cps for the 12 mers (40.8 kDa), the largest soluble form of ABs. sively, we have quantitatively predicted that the shock membrane potential drop (Δφ > 208.06 mV) and limited diffusible distance (<3.96 × 10−4 cm) in the brain would contribute the major detrimental effects to the neurons in the Alzheimerʹs diseases.
Keywords :
VISCOSITY , ?-Amyloid , diffusion , Membrane Nernst potential
Journal title :
Colloids and Surfaces B Biointerfaces
Serial Year :
2009
Journal title :
Colloids and Surfaces B Biointerfaces
Record number :
1970478
Link To Document :
بازگشت