Title of article :
Controlling cellular activity by manipulating silicone surface roughness
Author/Authors :
Prasad، نويسنده , , Babu R. and Brook، نويسنده , , Michael A. and Smith-Patten، نويسنده , , Terry and Zhao، نويسنده , , Shigui and Chen، نويسنده , , Yang and Sheardown، نويسنده , , Heather and Dʹsouza، نويسنده , , Renita and Rochev، نويسنده , , Yuri، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378 nm) and very rough (∼604 and ∼650 nm) PDMS samples. While the PDMS sample with roughness of ∼650 nm had significantly fewer fibroblasts at 24 h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.
Keywords :
silicones , surface topology , 3T3 fibroblasts , Cellular activity , Biocompatibility
Journal title :
Colloids and Surfaces B Biointerfaces
Journal title :
Colloids and Surfaces B Biointerfaces