Title of article :
Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media
Author/Authors :
Hajdْ، نويسنده , , Angéla and Szekeres، نويسنده , , Mلrta and Tَth، نويسنده , , Ildikَ Y. and Bauer، نويسنده , , Rita A. and Mihلly، نويسنده , , Judith and Zupkَ، نويسنده , , Istvلn and Tombلcz، نويسنده , , Etelka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH = 6.5 ± 0.3 and I = 0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion–carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ∼0.001 M at no added PAA up to ∼0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.
Keywords :
Polyacrylic acid , Carboxylated coating , magnetite , Electrosteric stabilization , magnetic fluids , Nanotoxicity
Journal title :
Colloids and Surfaces B Biointerfaces
Journal title :
Colloids and Surfaces B Biointerfaces