Title of article :
Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate)
Author/Authors :
Tu، نويسنده , , Qin and Wang، نويسنده , , Jianchun and Liu، نويسنده , , Rui and He، نويسنده , , Juan and Zhang، نويسنده , , Yanrong and Shen، نويسنده , , Shaofei and Xu، نويسنده , , Juan and Liu، نويسنده , , Jianjun and Yuan، نويسنده , , Mao-Sen and Wang، نويسنده , , Jinyi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A quaternized poly(dimethylaminoethyl methacrylate)-grafted poly(dimethylsiloxane) (PDMS) surface (PDMS-QPDMAEMA) was successfully prepared in this study via solution-phase oxidation reaction and surface-initiated atom transfer radical polymerization (SI-ATRP) using dimethylaminoethyl methacrylate (DMAEMA) as initial monomer. PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the SiCH3 groups on their surfaces into SiOH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and DMAEMA was then grafted onto the PDMS surface via copper-mediated ATRP. Finally, the tertiary amino groups of PolyDMAEMA (PDMAEMA) were quaternized by ethyl bromide to provide a cationic polymer brush-modified PDMS surface. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the quaternized PDMAEMA brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-QPDMAEMA surface were examined by contact angle measurements. Antifouling properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-QPDMAEMA surface exhibited durable wettability and stability, as well as significant antifouling properties, compared with the native PDMS and PDMS-PDMAEMA surfaces. In addition, our results present possible uses for the PDMS-QPDMAEMA surface as adhesion barriers and antifouling or functional surfaces in PDMS microfluidics-based biomedical applications.
Keywords :
Poly(dimethylsiloxane) , Surface modification , SI-ATRP , Cationic polymer , antifouling
Journal title :
Colloids and Surfaces B Biointerfaces
Journal title :
Colloids and Surfaces B Biointerfaces