Title of article :
Solid-support immobilization of a “swing” fusion protein for enhanced glucose oxidase catalytic activity
Author/Authors :
Takatsuji، نويسنده , , Yoshiyuki and Yamasaki، نويسنده , , Ryota and Iwanaga، نويسنده , , Atsushi and Lienemann، نويسنده , , Michael R. Linder، نويسنده , , Markus B. and Haruyama، نويسنده , , Tetsuya، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The strategic surface immobilization of a protein can add new functionality to a solid substrate; however, protein activity, e.g., enzymatic activity, can be drastically decreased on immobilization onto a solid surface. The concept of a designed and optimized “molecular interface” is herein introduced in order to address this problem. In this study, molecular interface was designed and constructed with the aim of attaining high enzymatic activity of a solid-surface-immobilized a using the hydrophobin HFBI protein in conjunction with a fusion protein of HFBI attached to glucose oxidase (GOx). The ability of HFBI to form a self-organized membrane on a solid surface in addition to its adhesion properties makes it an ideal candidate for immobilization. The developed fusion protein was also able to form an organized membrane, and its structure and immobilized state on a solid surface were investigated using QCM-D measurements. This method of immobilization showed retention of high enzymatic activity and the ability to control the density of the immobilized enzyme. In this study, we demonstrated the importance of the design and construction of molecular interface for numerous purposes. This method of protein immobilization could be utilized for preparation of high throughput products requiring structurally ordered molecular interfaces, in addition to many other applications.
Keywords :
Hydorphobin , Glucose oxidase , Surface functionalization , Self-organized membrane
Journal title :
Colloids and Surfaces B Biointerfaces
Journal title :
Colloids and Surfaces B Biointerfaces