Title of article :
Molecular dynamics simulations of self-diffusion coefficient and thermal conductivity of methane at low and moderate densities
Author/Authors :
Liang، نويسنده , , Zhi-Ren Tsai، نويسنده , , Hai-Lung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This article demonstrates a highly accurate molecular dynamics (MD) simulation of thermal conductivity of methane using an ab initio intermolecular potential. The quantum effects of the vibrational contribution to thermal conductivity are more efficiently accounted for in the present MD model by an analytical correction term as compared to by the Monte Carlo method. The average deviations between the calculated thermal conductivity and the experimental data are 0.92% for dilute methane and 1.29% for methane at moderate densities, as compared to approximately 20% or more in existing MD calculations. The results demonstrate the importance of considering vibrational contribution to the thermal conductivity which is mainly through the self-diffusion process.
Keywords :
Methane , Molecular dynamics , transport coefficients , Vibration
Journal title :
Fluid Phase Equilibria
Journal title :
Fluid Phase Equilibria