Title of article :
Galoisian approach to integrability of Schrِdinger equation
Author/Authors :
Acosta-Humلnez، نويسنده , , Primitivo B. and Morales-Ruiz، نويسنده , , Juan J. and Weil، نويسنده , , JACQUES-ARTHUR WEIL، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
70
From page :
305
To page :
374
Abstract :
In this paper, we examine the nonrelativistic stationary Schrödinger equation from a differential Galois-theoretic perspective. The main algorithmic tools are pullbacks of second-order ordinary linear differential operators, so as to achieve rational function coefficients (“algebrization”), and Kovacicʹs algorithm for solving the resulting equations. In particular, we use this Galoisian approach to analyze Darboux transformations, Crum iterations and supersymmetric quantum mechanics. We obtain the ground states, eigenvalues, eigenfunctions, eigenstates and differential Galois groups of a large class of Schrödinger equations, e.g. those with exactly solvable and shape invariant potentials (the terms are defined within). Finally, we introduce a method for determining when exact solvability is possible.
Keywords :
Schrِdinger equation , shape mvariant potentials , Supersymmetric quantum mechanics , Darboux transformations , algebraic spectrum , exactly solvable potentials , quasi-exactly solvable potentials , Differential Galois theory
Journal title :
Reports on Mathematical Physics
Serial Year :
2011
Journal title :
Reports on Mathematical Physics
Record number :
1990461
Link To Document :
بازگشت