Author/Authors :
Baudoin، نويسنده , , Ezékiel and Benizri، نويسنده , , Emile and Guckert، نويسنده , , Armand، نويسنده ,
Abstract :
Bacterial densities, metabolic signatures and genetic structures were evaluated to measure the impact of soil enrichment of soluble organic carbon on the bacterial community structures. The exudates chosen were detected in natural maize exudates (glucose, fructose, saccharose, citric acid, lactic acid, succinic acid, alanine, serine and glutamic acid) and were used at a rate of 100 μg C g−1 day−1 for 14 days. Moreover two synthetic solutions with distinct carbon/nitrogen ratios (20.5 and 40.1), obtained by varying carboxylic and amino acids concentrations, were compared in order to evaluate the potential role of organic N availability. The in vitro experiment consisted of applying exudate solutions to bulk soil. In the case of the control, only distilled water was added. Both solutions significantly increased bacterial densities and modified the oxidation pattern of Biolog® GN2 plates with no effect of the C/N ratio on these two parameters. Genetic structure, measured by means of ribosomal intergenic spacer analysis (RISA), was also consistently modified by the organic amendments. N availability levels led to distinct genetic structures. In a second experiment, one of the previous exudate solutions (C/N 20.5) was applied to 15-day-old maize plants to determine the structural influence of exudates on the rhizosphere microbial community (in situ experiment). Bacterial densities were significantly increased, but to a lesser extent than had been found in the in vitro experiment. Metabolic potentials and RISA profiles were also significantly modified by the organic enrichment.
Keywords :
Bacterial community structure , Exudates , Rhizosphere , BIOLOG® , RISA , Maize