Author/Authors :
Nocentini، نويسنده , , Caterina and Guenet، نويسنده , , Bertrand and Di Mattia، نويسنده , , Elena and Certini، نويسنده , , Giacomo and Bardoux، نويسنده , , Gerard and Rumpel، نويسنده , , Cornelia، نويسنده ,
Abstract :
Effects of fire on the functioning of the soil microbial community are largely unknown. In this study, we addressed the charcoal mineralisation potential of microbial inocula extracted from burned and unburned soil. The mineralisation of charcoal was analysed during a 1 month incubation experiment under controlled conditions with and without substrate addition. The aim of the study was to elucidate (1) the indirect effect of fire on the functioning of the soil microbial community in terms of charcoal degradation and (2) the possibility to stimulate this degradation by addition of two substrates of increasing complexity. Our conceptual approach included the monitoring of CO2 emission from microcosms containing laboratory-made charcoal and microbial inocula from burned and unburned soil with and without 13C labelled glucose and cellulose.
sults showed higher charcoal mineralisation without substrate addition in microcosms with the inocula from unburned soil compared to burned soil. Charcoal mineralisation was stimulated by the addition of glucose, whereas cellulose addition did not induce a priming effect. We observed a higher stimulation of charcoal mineralisation induced by glucose for the inoculum from burned soil compared to the inoculum from unburned soil. We concluded that fire did affect the functioning of the soil microbial community in terms of charcoal degradation and that the important priming effect induced by glucose may be explained by an increase of the overall microbial activity, rather than selective stimulation of charcoal degrading microbial communities.
Keywords :
forest fire , charcoal , Priming , black carbon