Author/Authors :
Arnould، نويسنده , , M. and Goriely، نويسنده , , S. and Takahashi، نويسنده , , K.، نويسنده ,
Abstract :
The r-process, or the rapid neutron-capture process, of stellar nucleosynthesis is called for to explain the production of the stable (and some long-lived radioactive) neutron-rich nuclides heavier than iron that are observed in stars of various metallicities, as well as in the solar system.
large amount of nuclear information is necessary in order to model the r-process. This concerns the static characteristics of a large variety of light to heavy nuclei between the valley of stability and the vicinity of the neutron-drip line, as well as their beta-decay branches or their reactivity. Fission probabilities of very neutron-rich actinides have also to be known in order to determine the most massive nuclei that have a chance to be involved in the r-process. Even the properties of asymmetric nuclear matter may enter the problem. The enormously challenging experimental and theoretical task imposed by all these requirements is reviewed, and the state-of-the-art development in the field is presented.
r-physics-based and astrophysics-free r-process models of different levels of sophistication have been constructed over the years. We review their merits and their shortcomings. The ultimate goal of r-process studies is clearly to identify realistic sites for the development of the r-process. Here too, the challenge is enormous, and the solution still eludes us. For long, the core collapse supernova of massive stars has been envisioned as the privileged r-process location. We present a brief summary of the one- or multidimensional spherical or non-spherical explosion simulations available to-date. Their predictions are confronted with the requirements imposed to obtain an r-process. The possibility of r-nuclide synthesis during the decompression of the matter of neutron stars following their merging is also discussed.
the uncertainties remaining on the astrophysical r-process site and on the involved nuclear physics, any confrontation between predicted r-process yields and observed abundances is clearly risky. A comparison dealing with observed r-nuclide abundances in very metal-poor stars and in the solar system is attempted on grounds of r-process models based on parametrised astrophysics conditions. The virtues of the r-process product actinides for dating old stars or the solar system are also critically reviewed.