Author/Authors :
Mori، نويسنده , , Takaaki، نويسنده ,
Abstract :
The diffuse flux of neutrinos released from all past supernova explosions in the universe is known as the supernova relic neutrinos (SRN). Super-Kamiokande (SK) has conducted searches for these SRN events via their inverse beta decay interactions in the detector, in the process establishing the worldʹs best limits on this still unobserved flux. These limits are within about a factor of two of the theoretically predicted fluxes. But these searches are background limited, and without some major improvement further progress will be difficult. The addition of gadolinium (Gd) compound into the SK detector was proposed to reduce background. Gd has the largest thermal neutron capture cross-section among all stable nuclei and emits an 8 MeV γ cascade following the capture. By coincidental tagging of positrons with the γ rays from Gd neutron capture, we can identify the dominant SRN signal in SK: inverse beta decay. This Gd-loading technique should allow SK to make the worldʹs first observation of a SRN signal. We will demonstrate the principle of a Gd-doped water Cherenkov detector (transparency of the Gd-doped water, Gd-doped water circulation method, neutron capture efficiency, etc) with a dedicated test facility named EGADS. EGADS consists of a 200 ton water Cherenkov detector, a Gd dissolving pre-treatment device, a Gd-capable water circulation system, and a custom-built water transparency measurement device. We have evaluated Gd-doped water circulation using the main EGADS water system since 2012. The evaluation of the overall performance of EGADS will start in 2013 after PMT installation.
Keywords :
Neutrino , Water cherenkov , SUPERNOVA , Super-Kamiokande