Title of article :
Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector
Author/Authors :
Riggi، نويسنده , , S. and Antonuccio-Delogu، نويسنده , , V. and Bandieramonte، نويسنده , , M. and Becciani، نويسنده , , Marيa U. and Costa، نويسنده , , A. and La Rocca، نويسنده , , P. and Massimino، نويسنده , , P. and Petta، نويسنده , , C. and Pistagna، نويسنده , , C. and Riggi، نويسنده , , F. L. Sciacca، نويسنده , , E. and Vitello، نويسنده , , F.، نويسنده ,
Pages :
10
From page :
59
To page :
68
Abstract :
Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full Geant4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.
Keywords :
Muon tomography , Imaging algorithms , Clustering methods , Autocorrelation analysis , Maximum likelihood , EM algorithm
Journal title :
Astroparticle Physics
Record number :
2014319
Link To Document :
بازگشت