Author/Authors :
Partridge، نويسنده , , M and Hesse، نويسنده , , B.-M and Müller، نويسنده , , L، نويسنده ,
Abstract :
A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512×512 pixel, 400 μm pitch, arrays of a-Si:H p–i–n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10–15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0±0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with a half-life of between 3.3 and 3.8 frames. Both systems are demonstrated to have a pronounced sensitivity to low-energy multiply scattered photons, although this is shown to be effectively filtered out using a 2 mm copper build-up plate. The direct-detection system, with the 2 mm Cu build-up, shows greater sensitivity to scattered radiation than the indirect system. The spatial resolutions of both systems were effectively equal with an f50 of 0.25 mm−1 when pixels are binned 2×2, although a slight contribution from optical scattering in the phosphor screen is seen for the indirect-detection system. The quantum efficiency of the direct-detection system is a factor of 0.45 lower than that of the indirect-detection system. The application of these detectors to megavoltage CT is discussed, with the conclusion that the indirect-detection system is to be preferred.
Keywords :
portal imaging , amorphous silicon , flat-panel imager , MVCT