Title of article :
A novel zinc chelate complex containing both phosphorus and nitrogen for improving the flame retardancy of low density polyethylene
Author/Authors :
Cao، نويسنده , , Zhenhu and Zhang، نويسنده , , Yan and Song، نويسنده , , Pingan and Cai، نويسنده , , Yuanzheng and Guo، نويسنده , , Qi and Fang، نويسنده , , Zhengping and Peng، نويسنده , , Mao، نويسنده ,
Abstract :
A novel metal chelate complex containing phosphorus, nitrogen and zinc (II) ion was synthesized and used as the flame retardant of low density polyethylene (LDPE). The zinc chelate complex was synthesized by reacting zinc acetate with the ligand of tetraethyl (1,2-phenylenebis(azanediyl)) bis (2-hydroxylphenylmethylene) diphosphonate (TEPAPM). The chemical structure of the target Zn-TEPAPM was confirmed by FTIR, 1H NMR, 13C NMR and 31P NMR spectra. The flame retardancy and thermal behavior of LDPE containing various amount of Zn-TEPAPM were investigated by limiting oxygen index test, thermogravimetric (TG) analysis and cone calorimetry. The results show that Zn-TEPAPM can greatly increase the thermal stability, the char formation and smoke suppression ability of LDPE. The TG curves show that even when the filler content of Zn-TEPAPM is as low as 1 wt% in LDPE, the onset degradation temperature of LDPE is increased from 429 °C to 442 °C, and the maximum degradation temperature is increased from 469 °C to 488 °C. Also, a reduction of 32% for the peak heat release rate (PHRR) is obtained in the cone test. Moreover, Zn-TEPAPM is demonstrated to be a very effective synergist of ammonium polyphosphate (APP). When 1 wt% of Zn-TEPAPM was introduced into the LDPE/APP (mass ratio 80/19) blend, the PHRR value is reduced by 32%, compared with that of LDPE/APP blend without Zn-TEPAPM, and the char layer becomes more compact and intact.
Keywords :
Zn chelate , Low density polyethylene , flame retardant , ?-Aminophosphite
Journal title :
Astroparticle Physics