Title of article :
Semiparametric inference in a GARCH-in-mean model
Author/Authors :
Christensen، نويسنده , , Bent Jesper and Dahl، نويسنده , , Christian M. and Iglesias، نويسنده , , Emma M.، نويسنده ,
Pages :
15
From page :
458
To page :
472
Abstract :
A new semiparametric estimator for an empirical asset pricing model with general nonparametric risk-return tradeoff and GARCH-type underlying volatility is introduced. Based on the profile likelihood approach, it does not rely on any initial parametric estimator of the conditional mean function, and it is under stated conditions consistent, asymptotically normal, and efficient, i.e., it achieves the semiparametric lower bound. A sampling experiment provides finite sample comparisons with the parametric approach and the iterative semiparametric approach with parametric initial estimate of Conrad and Mammen (2008). An application to daily stock market returns suggests that the risk-return relation is indeed nonlinear.
Keywords :
Efficiency bound , GARCH-M Model , Risk-return relation , Semiparametric inference , profile likelihood
Journal title :
Astroparticle Physics
Record number :
2041557
Link To Document :
بازگشت