Title of article :
Statistical inference on regression with spatial dependence
Author/Authors :
Robinson، نويسنده , , Peter M. and Thawornkaiwong، نويسنده , , Supachoke، نويسنده ,
Pages :
22
From page :
521
To page :
542
Abstract :
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss estimation of the variance matrix, including estimates that are robust to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample performance is included. In an empirical example, the estimates and robust and non-robust standard errors are computed from Indian regional data, following tests for spatial correlation in disturbances, and nonparametric regression fitting. Some final comments discuss modifications and extensions.
Keywords :
Nonparametric regression , Linear regression , Spatial data , Asymptotic normality , Instrumental variables , Variance estimation , Partly linear regression
Journal title :
Astroparticle Physics
Record number :
2041562
Link To Document :
بازگشت