Title of article :
Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
Author/Authors :
Modares، نويسنده , , Hamidreza and Alfi، نويسنده , , Alireza and Naghibi Sistani، نويسنده , , Mohammad-Bagher، نويسنده ,
Pages :
7
From page :
1105
To page :
1111
Abstract :
Bilinear models can approximate a large class of nonlinear systems adequately and usually with considerable parsimony in the number of coefficients required. This paper presents the application of Particle Swarm Optimization (PSO) algorithm to solve both offline and online parameter estimation problem for bilinear systems. First, an Adaptive Particle Swarm Optimization (APSO) is proposed to increase the convergence speed and accuracy of the basic particle swarm optimization to save tremendous computation time. An illustrative example for the modeling of bilinear systems is provided to confirm the validity, as compared with the Genetic Algorithm (GA), Linearly Decreasing Inertia Weight PSO (LDW-PSO), Nonlinear Inertia Weight PSO (NDW-PSO) and Dynamic Inertia Weight PSO (DIW-PSO) in terms of parameter accuracy and convergence speed. Second, APSO is also improved to detect and determine varying parameters. In this case, a sentry particle is introduced to detect any changes in system parameters. Simulation results confirm that the proposed algorithm is a good promising particle swarm optimization algorithm for online parameter estimation.
Keywords :
Bilinear systems , Parameter estimation , Adaptive particle swarm optimization , Inertia weight , Optimization algorithms
Journal title :
Astroparticle Physics
Record number :
2046840
Link To Document :
بازگشت