Title of article :
Energy conservation based fuzzy tracking for unmanned aerial vehicle missions under a priori known wind information
Author/Authors :
Theodora Kladis، نويسنده , , Georgios P. and Economou، نويسنده , , John T. and Knowles، نويسنده , , Kevin and Lauber، نويسنده , , Jimmy and Guerra، نويسنده , , Thierry-Marie، نويسنده ,
Pages :
17
From page :
278
To page :
294
Abstract :
The aim of this work is to include the navigation step for the waypoint-based guidance of a UAV system and to illustrate aspects such as tracking of the reference trajectory under wind presence, while conserving total energy requirements. The mission is represented utilising graph theory tools. The mathematical modelling of an aircraft controlled by an actuator surface is presented in terms of simple analytic relationships in order to simulate the actual horizontal motion of the vehicle. Its equivalence with a Tagaki–Sugeno (T-S) fuzzy system is illustrated that can aid the control methodology involved. Additionally, the advantages of utilising such an analysis is also stressed. The model formulated is an error posture model, that depends on current and reference posture. The control law is designed through parallel distributed compensation (PDC) and the gains are computed with the help of linear matrix inequalities (LMIs). Hence stability for the system is also guaranteed provided that the state variables are bounded in a priori known compact space. Moreover the energy requirements are described. rticle is contributing towards energy enhancing a UAV mission and generating safely-flyable trajectories to meet mission objectives. The control law used is calculated in the pre-flight planning and can be used in real time for any trajectory to be tracked under any environmental conditions. Provided that angular and linear velocities are bounded, the latter is feasible under the assumption that the magnitude of air speed is small compared to the ground velocity of the aerial vehicle. The methodology offers an improved visualisation to aid an analyst with the representation of a UAV mission through graph theory tools utilising energy requirements for the mission and fast computational schema using matrix analysis. lation example of a UAV deployed from a source to reach a destination node under windy conditions is included to illustrate the analysis. The reference trajectory used is a piecewise Bezier–Bernstein curve referred to as the Dubins path.
Keywords :
graph theory , Energy cost matrix , Energy conservation , parallel distributed compensation , Takagi–Sugeno fuzzy model , linear matrix inequalities , Pre-flight planning
Journal title :
Astroparticle Physics
Record number :
2046968
Link To Document :
بازگشت