Title of article :
Decentralized PID neural network control for five degree-of-freedom active magneticbearing
Author/Authors :
Chen، نويسنده , , Syuan-Yi and Lin، نويسنده , , Faa-Jeng، نويسنده ,
Pages :
12
From page :
962
To page :
973
Abstract :
A decentralized proportional–integral–derivative neural network (PIDNN) control scheme is proposed to regulate and stabilize a fully suspended five degree-of-freedom (DOF) active magnetic bearing (AMB) system which is composed of two radial AMBs (RAMBs) and one thrust AMB (TAMB). First, the structure and operating principles of the five-DOF AMB system are introduced. Then, the adopted differential driving mode (DDM) for the drive system of the AMB is analyzed. Moreover, due to the exact dynamic model of the five-DOF AMB system is vague, a decentralized PIDNN controller is proposed to control the five-axes of the rotor simultaneously in order to confront the uncertainties including inherent nonlinearities and external disturbances effectively. Furthermore, the connective weights of the PIDNN are trained on-line and the convergence analysis of the regulating error is provided using a discrete-type Lyapunov function. Based on the decentralized concepts, the computational burden is reduced and the controller design is simplified. Finally, the experimental results show that the proposed control scheme provides good control performances and robustness for controlling the fully suspended five-DOF AMB system in different operating conditions.
Keywords :
Gradient descent method , Active Magnetic Bearing , PID neural network , decentralized control
Journal title :
Astroparticle Physics
Record number :
2047721
Link To Document :
بازگشت