Title of article :
Self-Adjustable Neural Network for speech recognition
Author/Authors :
Ting، نويسنده , , Hua-Nong and Yong، نويسنده , , Boon-Fei and Mirhassani، نويسنده , , Seyed Mostafa، نويسنده ,
Abstract :
Neural networks with fixed input length are not able to train and test data with variable lengths in one network size. This issue is very crucial when the neural networks need to deal with signals of variable lengths, such as speech. Though various methods have been proposed in segmentation and feature extraction to deal with variable lengths of the data, the size of the input data to the neural networks still has to be fixed. A novel Self-Adjustable Neural Network (SANN) is presented in this paper, to enable the network to adjust itself according to different data input sizes. The proposed method is applied to the speech recognition of Malay vowels and TIMIT isolated words. SANN is benchmarked against the standard and state-of-the-art recogniser, Hidden Markov Model (HMM). The results showed that SANN was better than HMM in recognizing the Malay vowels. However, HMM outperformed SANN in recognising the TIMIT isolated words.
Keywords :
neural network , Variable input length , Malay vowels , TIMIT , Isolated words , Children speech
Journal title :
Astroparticle Physics