Author/Authors :
Fu، نويسنده , , Qingbin and Gao، نويسنده , , Hong-Bo and Dou، نويسنده , , Hui-Qin Hao، نويسنده , , Liang and Lu، نويسنده , , Xiangjun and Sun، نويسنده , , Kang and Jiang، نويسنده , , Jianchun and Zhang، نويسنده , , Xiaogang، نويسنده ,
Abstract :
A novel and facile non-covalent process was applied to sulfonate multiwalled carbon nanotubes (MWCNTs) with a high –SO3H loading carbonaceous (C-SO3H). Then the sulfonated multi-walled carbon nanotubes/polypyrrole nanocomposite (MWCNTs/C-SO3H/PPy) was synthesized by the in situ chemical polymerization of pyrrole on the non-covalent sulfonated MWCNTs (MWCNTs/C-SO3H) using ammonium persulfate as oxidant at low-temperature. Fourier transform infrared (FT-IR) spectra confirm the modification of MWCNTs and an existence of interaction between the –SO3H group of the modified MWCNTs and the N–H group of PPy. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), FT-IR and ultraviolet–visible (UV–vis) spectra show that uniform PPy layer coated on the sidewall of MWCNTs/C-SO3H. The electrochemical properties of the MWCNTs/C-SO3H/PPy composite were studied by cyclic voltammetry and galvanostatic charge/discharge test. The composite possesses good rate response and stable specific capacitance, the specific capacitance loss is only 3% even after the 1000 cycles.