Title of article :
Modelling electrochemical control of percolation conductivity in short-chain templated conducting polymers
Author/Authors :
McGarry، نويسنده , , Steven P. and Barrera Ramirez، نويسنده , , Eduardo A. and Garry Tarr، نويسنده , , N.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2015
Pages :
8
From page :
156
To page :
163
Abstract :
Processible, predoped conducting polymer materials are now commonly formed using a polyelectrolyte backbone as a template material. This results in the conducting portion of the material being composed of a distribution of relatively short-chain oligomers with a corresponding distribution of saturated doping levels. We have investigated the effect of multiple ion doping compensation on the conduction properties of such materials by treating the individual chains as switchable conducting island sites in a percolation matrix. The results of one-, two-, and three-dimensional simulations are compared to experimental results. We show that the measured electrochemical control of material conductivity is best modelled by the simple one-dimensional case which reproduces the characteristic sigmoid-shaped curve. Our findings are consistent with quasi-1D hopping transport between sites, which is the dominant theory for conductivity in this class of materials.
Keywords :
PEDOT:PSS , Screen-printing , electrochemical , conjugated polymer , Percolation , Electro-ionic
Journal title :
Synthetic Metals
Serial Year :
2015
Journal title :
Synthetic Metals
Record number :
2091364
Link To Document :
بازگشت