Title of article :
Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder
Author/Authors :
Fu، نويسنده , , Y.C. and Ho، نويسنده , , M.L. and Wu، نويسنده , , S.C. and Hsieh، نويسنده , , H.S. and WANG، نويسنده , , C.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
1149
To page :
1158
Abstract :
The porous calcium phosphate beads were made by an alginate-interacting Ca ions mechanism on addition of a pore-forming polyethylene (PE) powder at 1250 °C sintering. The nature of the powders and porous beads were analyzed through X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and heavy metal analysis by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The porous beads size and the pore microstructure characteristics were determined using scanning electron microscopy (SEM). Beside, the porosity analysis was evaluated out using an Archimedesʹ principle and mercury porosimetry. Then, the sodium ampicillin was penetrated/adsorbed onto calcium-deficient hydroxyapatite porous beads, and was subsequently released in PBS. No matter whether the raw material was HAp, TCP or biphase, the Ca9(HPO4)(PO4)5OH phase (CDHA) was formed only after sintering. Porous beads of various calcium phosphates with different sizes (0.9–1.1 mm) and pore size groups (60–120 μm and lower than 10 μm) were appeared. The release kinetics of sodium ampicillin from these porous beads have indicated the possibility of using these materials as possible carriers for drug delivery.
Keywords :
Porous , bead , Calcium Phosphate , Alginate
Journal title :
Materials Science and Engineering C
Serial Year :
2008
Journal title :
Materials Science and Engineering C
Record number :
2099668
Link To Document :
بازگشت