Title of article :
Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings
Author/Authors :
Nelson، نويسنده , , G.M. and Nychka، نويسنده , , J.A. and McDonald، نويسنده , , A.G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
16
From page :
261
To page :
276
Abstract :
Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20 ± 2 MPa (n = 5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to support tissue ingrowth and vascular tissue, and the comparable strength to similar coatings.
Keywords :
adhesion strength , Biocompatibility , Thermal spraying , Flame Spraying
Journal title :
Materials Science and Engineering C
Serial Year :
2014
Journal title :
Materials Science and Engineering C
Record number :
2104097
Link To Document :
بازگشت